欢迎访问山东卓力工矿设备有限公司网站
定制咨询热线400-083-4511
联系我们

山东卓力工矿设备有限公司

邮 箱:zhuoligk@163.com
手 机:18605374511
电 话:400-083-4511
地 址:济宁市中区龙行路88号

新型太阳能电池介绍

发布时间:2018-08-25 06:18:01人气:438
新型太阳能电池介绍
染料敏化太阳电池

染料感光太阳电池(Dye-sensitized solar cell,DSSC)是新被开发出来的一种崭新的太阳电池。DSsC也被称为Grätzel cell,因为是在1991年由Grätzel等人发表的构造和一般光伏特电池不同,其基板通常是玻璃,也可以是透明且可弯曲的聚合箔(polymer foil),玻璃上有一层透明导电的氧化物(transparent conducting oxide,TCO)通常是使用FTO(SnO2:F),然后长有一层约10微米厚的porous纳米尺寸的 TiO2粒子(约10~20 nm)形成一nano-porous薄膜。然后涂上一层染料附着于TiO2的粒子上。通常染料是采用ruthenium polypyridyl complex。上层的电极除了也是使用玻璃和TCO外,也镀上一层铂当电解质反应的催化剂,二层电极间,则注入填满含有iodide/triiodide电解质。虽然DSC电池的最高转换效率约在12%左右(理论最高29﹪),但是制造过程简单,所以一般认将大幅降低生产成本,也同时降低每度电的电费。
串叠型电池
串叠型电池(Tandem Cell)属于一种运用新颖原件结构的电池,借由设计多层不同能隙的太阳能电池来达到吸收效率最佳化的结构设计。由理论计算可知,如果在结构中放入越多层数的电池,将可把电池效率逐步提升,甚至可达到50%的转换效率。
光纤太阳能电池
光纤太阳能电池(Fiber-based solar cell 或者Fiber cell)由美国Wake Forest University纳米与分子研究中心首先提出,并在美国《AppliedPhysics Letters》(doi:10.1063/1.3263947)和《Physical Review B》(DOI: 10.1103/PhysRevB.84.085206,2011)上报道了这种电池的最新成果。它利用特有的光纤结构,并结合有机吸收层,达到了超出平面电池的吸收效率,并已被证明能够很好的应用到超光强的聚光型电站中。
透明电池
据美国物理学家组织网报道,美国能源部布鲁克海文国家实验室和洛斯阿拉莫斯国家实验室的科学家们研发出了一种可吸收光线并将其大面积转化成为电能的新型透明薄膜。这种薄膜以半导体和富勒烯为原料,具有微蜂窝结构。相关研究发表在最新一期的《材料化学》杂志上,论文称该技术可被用于开发透明的太阳能电池板,甚至还可以用这种材料制成可以发电的窗户。 这种材料由掺杂碳富勒烯的半导体聚合物组成。在严格控制的条件下,该材料可通过自组装方式由一个微米尺度的六边形结构展开为一个数毫米大小布满微蜂窝结构的平面。
负责该研究的美国布鲁克海文国家实验室多功能纳米材料中心的物理化学家米尔恰·卡特莱特说,虽然这种蜂窝状薄膜的制作采用了与传统高分子材料(如聚苯乙烯)类似的工艺,但以半导体和富勒烯为原料,并使其能够吸收光线产生电荷这还是第一次。
据介绍,该材料之所以还能在外观上保持透明是因为聚合物链只与六边形的边缘紧密相连,而其余部分的结构则较为简单,以连接点为中心向外越来越薄。这种结构具有连接作用,同时具有较强的吸收光线的能力,也有利于传导电流,而其他部分相对较薄也更为透明,主要起透光的作用。
研究人员通过一种十分独特的方式来编织这种蜂窝状薄膜:首先在包含聚合物以及富勒烯在内的溶液中加入一层极薄的微米尺度的小水滴。这些水滴在接触到聚合物溶液后就会自组装成大型阵列,而当溶剂完全蒸发后,就会形成一块大面积的六边形蜂窝状平面。此外,研究人员发现聚合物的形成与溶剂的蒸发速度紧密相关,这相应地又会决定最终材料的电荷传输速度。溶剂蒸发得越慢,聚合物的结构就越紧凑,电荷传输速度也就越快。
“这是一种成本低廉而效益显著的制备方法,很有潜力从实验室应用到大规模商业化生产之中。”卡特莱特说。
通过扫描探针式电子显微镜和荧光共焦扫描显微镜,研究人员证实了新材料蜂窝结构的均匀性,并对其不同部位(边缘、中心、节点)的光学性质和电荷产生情况进行了测试。
卡特莱特表示:“我们的工作让人们对蜂窝结构的光学特征有了更深的了解。下一步我们计划将这种材料应用于透明且可卷曲的柔性太阳能电池以及其他设备的制造当中,以推动这种蜂窝薄膜尽快进入实用阶段。”
金属氧化物太阳能电池
美国斯坦福大学研究人员最新研究发现,加热铁锈之类金属氧化物,可以提升特定太阳能电池的转换效率和能量储存效率。
斯坦福大学研究人员在不同温度条件下测试三种金属氧化物,分别是钒酸铋、氧化钛和氧化铁,所获结果超出预想:温度升高时,电子通过这三种氧化物的速率加快,所产生的氢气和氧气量相应增加。而以阳光加热金属氧化物,所产生的氢气可以增加一倍。
综合利用热量和阳光,以金属氧化物为转换材料,借助对水分子的分解,高效储存太阳取之不尽的能量,可以按需供应能源。
400-083-4511